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Abstract The non-linear viscoelastic behaviour of a

polyurethane (PUR) network is determined by continuous

uniaxial tension tests and stepwise relaxation tests. Fol-

lowing the concept of internal variables on the modelling

side, the finite Neo-Hookean material model combined

with linear evolution equations for the internal variables is

applied to include the time-dependence caused by visco-

elasticity. The parameters are identified by an evolution

strategy combined with a non-linear finite element analysis

which solves the boundary value problem given by the

specimen geometry and testing conditions. In conclusion,

the combination of the described experiments and model-

ling provides a full description of the mechanical behaviour

of the given PUR.

Introduction and motivation

Polymers are widely used as adhesives in industrial

applications, i.e. in automotive and aeronautical engineer-

ing. The appropriate description of the mechanical

behaviour of such adhesive joints still poses a variety of

problems, i.e. very often the mechanical properties of the

viscoelastic polymer are not known with necessary preci-

sion. This is the motivation for our current research project

which deals with the modelling of polymer joints under

quasi-static and, at first, isothermal conditions at ambient

temperature (RT). Before analysing the complexity of an

adhesive in the joint, the bulk material itself is studied in

detail in this paper. Therefore, we prepare tensile speci-

mens which are investigated in our custom-made high

precision tensile tester GALLUS (proper name) [4, 5].

Experiments are performed either with constant tensile

strain rate or as stress relaxation measurements at given

strain levels for finite deformations.

Many publications concerning polyurethanes like [14,

41] focus on the influence of its components and their

concentration on mechanical behaviour without modelling

the viscoelasticity. Others like [27, 40] adapt one-dimen-

sional rheological models to experimental data obtained

from small deformation tests. Sophisticated continuum

mechanical models are discussed, e.g. by Khan et al. [21]

and Lion [31] for polyurethane based rubbers and filled

elastomers, respectively. Nevertheless, for the particular

used reactive PUR system no appropriate mechanical

characterisation is reported in literature. Moreover, the

mechanical properties of a PUR network are sensitive to

the route of chemical processing. Therefore, literature data

would not have the reliability needed for our study.

Finally, the goal of this contribution is to recall the

possibilities of continuum mechanical modelling applied to

viscoelastic solids and to fit such a model to data obtained

from experimental investigations. In the limits of our

experimental investigations the PUR possesses a typical

viscoelastic behaviour of a solid without any plasticity or

damage (i.e. Mullins effect). Furthermore, the material

proves to be incompressible. For the relaxed solid the

elasticity can be described by the Neo-Hookean law [38,

48, 52]. From the constitutive point of view, this incom-

pressible Neo-Hookean material model is combined with
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linear evolution equations for the internal variables

allowing to prescribe the viscoelastic response of the

polyurethane in a convenient manner, i.e. the relaxation

behaviour is described by a number of relaxation times.

The parameters of that material model are determined by

an evolution strategy which provides the parameter data on

the basis of the measured tensile test curves.

Modelling aspects

In our contribution we restrict ourselves to isothermal

conditions. At first, the basic idea of the formulation for

viscoelastic solids is briefly revisualised. The initial point

of the continuum mechanical considerations is a rheologi-

cal model as shown in Fig. 1. An extra spring element is

connected in parallel with j = 1,...,n spring-dashpot ele-

ments (Maxwell elements). As the extra spring represents

the elasticity in the relaxed state, the Maxwell elements

reproduce the viscoelastic component of the material

response.

The realisation of the finite viscoelasticity is based on

the concept of deformation-valued internal variables as

published by Reese [43–47], Lubliner [32], Le Tallec [51],

Lion [28–30], Haupt [19, 20], Amin [1–3], Boyce and

others [8–11, 22, 34–37]. We consider the same Neo-

Hookean modelling approach for all springs, and the

dashpots are represented by a linear viscous approach. Any

sophisticated viscoelastic behaviour can be described using

a sufficient number of Maxwell elements. Typically one or

two Maxwell elements are sufficient to describe the

relaxation response per decade of time.

The deformation of the extra spring, i.e. the basic elas-

ticity, is described by the left Cauchy-Green deformation

tensor B = F�FT which is a measure of the current con-

figuration B.

Starting from the multiplicative decomposition of the

deformation gradient F into an elastic and an inelastic part

Fe and Fi, respectively, a fictive intermediate configuration

Bi for each Maxwell element is established:

F ¼ Fj
e � F

j
i: ð1Þ

The multiplicative decomposition is developed and

motivated in the context of plasticity of crystals [23, 25,

26]. In the context of finite viscoelasticity it is used as a

constitutive assumption [43]. Bergström and Boyce [7]

interpreted the intermediate configuration as stress-free, i.e.

the non-equilibrium stress is assumed to be locally

completely relaxed. Thus, one obtains deformation and

stress measures with respect to the reference configuration

B0, intermediate configuration Bi and current configuration

B,

Cj
i :¼ FjT

i � F
j
i and Bj

e :¼ Fj
e � FjT

e : ð2Þ

The second order deformation tensors Ci
j, j = 1,...,n, describe

the inelastic deformation of the n dashpots of all Maxwell

elements with respect to the reference configuration B0,

while the tensors Be
j describe the elastic deformation of the

springs in the Maxwell elements with respect to the current

configuration B. The following relationship can be derived

between the deformation tensors Ci
j and Be

j :

Bj
e ¼ F � ðCj

iÞ
�1 � FT : ð3Þ

For detailed discussion of the kinematic quantities, see

e.g. [18, 43, 45, 3]. The derivation of the stress-

deformation relation follows by the evaluation of the

entropy principle in the form of the Clausius-Planck-

inequality for the isothermal case [18]:

�q _Wþ T : D� 0: ð4Þ

Herein T:D stands for the stress power defined by the

Cauchy stress tensor T and the deformation rate D. For the

derivation of the Clausius-Planck-inequality the Helmholtz

free energy density W = e � gT is defined in the form of the

Legendre transformation between the internal energy den-

sity e, the entropy density g and the absolute temperature T.

Based on the choice of the process variables, the free

energy density function W is split into a purely elastic part

and a viscoelastic part of the material behaviour, the so-

called non-equilibrium part [43]

W ¼ WeqðBÞ þ
Xn

j¼1

Wj
neqðBj

eÞ: ð5Þ

Note that the equilibrium part only depends on the

deformation B while the non-equilibrium parts depend on

the elastic deformation of the springs in the individual

Maxwell elements, i.e. on Be
j . The time-based development

of the non-equilibrium part is described by an evolution

equation according to the Clausius-Planck inequality. For

the internal variables we choose the tensors Ci
j with respect

Fig. 1 Rheological model of the viscoelasticity with j = 1,...,n
Maxwell elements
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to the reference configuration B0. After some calculations

one obtains the Clausius-Planck inequality in the form

Tþ pI� 2qB � oWeq

oB
�
Xn

j¼1

2qBj
e �

oWneq

oBj
e

 !
: D

�
Xn

j¼1

q
oWj

neq

oCj
i

: _Cj
i� 0: ð6Þ

In this context the Lagrange parameter p in combination

with the constraint div v = 0 was added to the balance of

entropy describing the unknown pressure of the incom-

pressible material. Executing the evaluation of the entropy

principle according to the classical argumentation of

Coleman and Noll [12] one obtains the Cauchy stress tensor

T ¼ �pIþ Teq þ
Xn

j¼1

Tj
neq: ð7Þ

The equilibrium stress and the non-equilibrium stresses

of the springs of the Maxwell elements j = 1,...,n are

described by the same Neo-Hookean [48] approach

Teq ¼ lB and Tj
neq ¼ lj

eBj
e; ð8Þ

respectively. In this context the parameter l stands for the

shear modulus of the material in the relaxed state and the

le
j represent the shear moduli of the springs in the Maxwell

elements.

As can be shown [43, 45], linear evolution equations

_Cj
i ¼

1

rj
C� Cj

i

� �
ð9Þ

formulated with respect to the reference configuration B0

satisfy the Clausius-Planck inequality 6. The second order

tensor C = FT�F is the right Cauchy-Green deformation

tensor. The 2 n parameters le
j and rj are the additional

viscoelastic material parameters which are investigated by

uniaxial tension experiments under constant strain rates.

Here, rj = gj/lj stands for the relaxation time and describes

the exponential decay of the stresses in the individual

Maxwell element in relaxation experiments. Equation 9

describes the behaviour of deformation of the dashpot

elements with respect to the deformation of the complete

model and of the time.

In the numerical solution scheme, the evolution equa-

tions themselves are solved by an implicit backward-Euler

integration scheme. Starting from the basic approach for a

time-dependent variable one obtains the equation

Cj
iðtnþ1Þ ¼

Dt

rj þ Dt
Cðtnþ1Þ þ

rj

rj þ Dt
Cj

iðtnÞ: ð10Þ

This equation has to be solved for each Maxwell

element and for each time step Dt =tn+1�tn at each

integration point of the finite element calculation. Note in

passing that any other integration scheme can be applied,

e.g. Runge–Kutta schemes [13, 16].

In the frame of the finite element analysis, the balance of

momentum and the incompressibility constraint are treated

in combination with the constitutive Eqs. 7–9. Starting

from the equilibrium and the incompressibility constraint

in the strong form

div T ¼ 0; det F� 1 ¼ 0; ð11Þ

the weak form of the saddle-point problem is derived by

multiplication with the test functions du and dp and by

integration by parts over the domain of B
Z

B
T : grad du dv ¼

Z

oB
�t � du da;

Z

B
ðdet F� 1Þdp dv ¼ 0:

ð12Þ

For the displacement u, Dirichlet- and Neumann-

boundary conditions can be prescribed on the boundary

C ¼ oB with CD [ CN = C to u ¼ �u on CD and t ¼ �t on CN.

From the numerical point of view we apply a mixed

Taylor-Hood-like element formulation as shown in Fig. 2

which is known to be stable and reliable, cf. Braess [6].

The mixed element formulation in the form of Eq. 12 is

implemented into the research code PANDAS, cf. [15], in

addition to the discrete evolution Eq. 10 and the

constitutive Eqs. 8.

Specimen preparation and experimental setup

Preparation of the samples

The investigated polyurethane network is synthesised from

three commercial monomers of the Bayer AG.

– Desmodur1CD: 89% diphenylmethane-4,4-diisocya-

nate and 11% urethoneimine triisocyanate (inhibitor of

crystallisation). Concerning this modification, Desmo-

dur1CD is also called modified diisocyanate, or

shortly MDI (see Fig. 3 for MDI as the principal

component)

Fig. 2 Nodal points and unknowns of the mixed Q2P1 element
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– Desmophen12060 BD: linear polypropylene ether

diol, shortly diol, chemical structure, see Fig. 4.

– Desmophen11380 BT: polypropylene ether triol,

shortly triol, chemical structure, see Fig. 5.

The chemical reaction of Desmophen12060 BD with

MDI results in linear chains, while Desmophen11380 BT

contributes cross-links for its trifunctionality. Hence, the

mechanical behaviour of the polymer can be adjusted by

variations of the mixing ratio of triol and diol. Here we use

a mixture with the ratios OHTriol : OHDiol = 4 : 1 and

OHtotal : NCO = 1 : 1.

The monomers are stored and mixed in desiccated air at

room temperature within a glove box to avoid parasitic

reactions of the isocyanate with water. After thorough

stirring of the components, the mixture is vacuum-degassed

at 2 torr for 10 min to make the resulting polymer free of

gas bubbles. Testing this step with the single components,

no significant mass loss was detected.

For the preparation of the dogbone specimens (Fig. 6),

the reacting monomer mixture is cast on a levelled PTFE

surface within the glove box where it forms a film of 1.5

mm thickness. It is cross-linked at room temperature for 72

h and then fully cured in dried air at 90 �C for another four

hours.

The specimens are die cut from the film. One film made

out of 97 g of PUR yields approximately 30 dogbone

specimens which have a length of 75 mm, a width of 4 mm

in the centre of the dogbone and a film thickness of

approximately 1.5 mm. All samples are numbered and the

thickness, width and length are measured. This material has

a glass transition temperature of Tg& 0 �C as measured by

differential scanning caliometry (DSC) experiments at 10

K/min heating rate in nitrogen atmosphere. Hence, this

PUR is an ideal prototype for elastomer polymers in the

viscoelastic state. For optical measurements of deformation

in the tensile tests, the dogbone specimens are patterned via

a physical vapour deposition (PVD) process with 100 nm

thick and 0.5 mm wide horizontal aluminium stripes. Due

to their small thickness the aluminium stripes do not

influence the mechanical behaviour of the PUR samples.

Description of the tensile tester

The displacement controlled tensile tester GALLUS is

custom-made with a force range of F = ±20 N at a reso-

lution of 5 mN. The schematic view of the machine is

shown in Fig. 7. It covers a displacement range of 50 mm

in the e1-axis (cf. Figs. 6 and 7) at a resolution of 1 lm.

The specimens are fixed on both sides with a custom-

made retention system and the expansion during the tensile

Fig. 3 Diphenylmethane-4,4-diisocyanate (MDI)

Fig. 4 Polpropylene ether diol, �n b¼ average degree of polymerisation

Fig. 5 Polypropylene ether triol, nþ m b¼ average degree of

polymerisation

Fig. 6 Dogbone specimen (ISO 527-2:1996 type 5A) evaporated

with Al stripes Fig. 7 Experimental setup for the uniaxial tension test
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tests is applied by the path controlled vertical positioner

LINOS1LT 50. During the measurement the transparent

samples are illuminated from behind to give a good con-

trast of the aluminium stripes. The displacement of these

stripes is detected by a high-resolution CCD camera for

video extensiometry.

The video analysis is carried out with a NI Vision

Development System1 using pattern recognition to find

the edges of the aluminium stripes from which we calcu-

late the stretches in longitudinal e1-direction and in cross

direction e2, respectively. Direct measurement of the dis-

placement field renders the machine stiffness negligible.

Nevertheless, we tested it by substituting the sample by a

piece of high grade steel and found an overall linear

machine deformation of 2.8 lm/N. This corresponds to a

few parts per thousand of the sample deformation within

the calibrated force range.

Experimental and mathematical investigation

concerning the pure elastic behaviour of the PUR

Preliminary tests have shown that the investigated poly-

urethane has an average fracture deformation of about 80–

90%. Hence, we restrict the measurement to a maximum

deformation of 60%. Up to this state, damage can be

excluded as proven by repeated loading-unloading experi-

ments. Now it will be shown that the Neo-Hookean

material model is appropriate to model PUR.

In the first step of modelling we take only the pure

elastic behaviour into account. The pure elasticity is

derived from uniaxial tension tests performed on our test-

ing device GALLUS. Here, the sample elongation is

stopped at a series of points and then the sample is allowed

to relax. Figure 8 shows this discontinuous tension test for

a holding time of about 180 s and a deformation step of 1

mm elongation (machine displacement) per load step.

Figure 9 depicts just one relaxation step as an example.

For practical reasons the relaxation time was set to a

maximum of 180 s which yields a non-equilibrium stress

below a 3% cut-off as proven in long-running relaxation

tests, cf. Fig. 10.

By comparing these step relaxation experiments with a

tensile test at constant strain rate, it is shown that a machine

velocity of V = 0.01 mm/s is slow enough to neglect the

viscoelastic effects, cf. Fig. 11. The force-values at the end

of each relaxation step, i.e. for the loading and for the

corresponding unloading step, are averaged and plotted

against the machine displacement. This calculated curve

describing the relaxed state of the material is then com-

pared with a continuous tensile test (no stops) at a constant

deformation rate in order to show how slow the velocity of

the machine displacement must be not to activate visco-

elasticity, cf. Fig. 11.

For the analysis of the experimental data, we applied the

following procedure: as a first step, we calculated the

average of the relaxed force values. Then, the commercial

Fig. 8 Measured force during discontinuous tensile test

Fig. 9 Magnification of a relaxation step

Fig. 10 Long-running relaxation test in a double logarithmic diagram

(smoothed)

9898 J Mater Sci (2007) 42:9894–9904

123



NI Vision Development System1 software tool is utilised

to calculate the stretch k1 in e1-direction via pattern rec-

ognition. The stretch k1 is given by

k1 ¼
l

l0
ð13Þ

where l stands for the distance of two aluminium stripes

(Fig. 6) with respect to the current configuration B (the

given level of elongation) and l0 reflects their distance with

respect to the reference configuration B0 (before loading).

Now, the correlation for the component B11 of the left

Cauchy-Green deformation tensor to the stretch k1 is given

by

B11 ¼ k2
1: ð14Þ

Figure 12 presents the evolution of the averaged stretch

k1 as a function of the machine displacement U for

numerous dogbone specimens in the relaxed state as

obtained by pattern recognition. A relative error of

±0.322% illustrates the high reproducibility of the

measurements.

As the stretch k1 is needed not only for discrete points

but for the whole machine displacement U we use a linear

fit function to describe it (Fig. 12). This linear function

k1 ¼ 1:0þ 0:02632 mm�1U ð15Þ

has an average error of ±0.256% with respect to the dis-

crete set of experimental data. With Eq. 15 we do not need

any further pattern recognition for the viscoelastic

experiments.

The same method is used to receive the change in

sample width in terms of k2 = b/b0 with respect to the

machine displacement. During the tensile test, we mea-

sured the width b of the specimen in detail and set it in

relation to the width b0 in the undeformed state. The

measurement position moved with a traced aluminium

stripe. These results are plotted in Fig. 13 and compared

with the analytical solution of the incompressibility con-

straint det F ¼ k1k
2
2 ¼ 1. Herein the implicit basic

assumption of isotropy was made, i.e. that the change of

the width and of the thickness is the same, k2 = k3. The

comparison between measured and computed data shows

that within the margins of experimental error the PUR is

incompressible. Henceforth only the analysis of the stretch

k1 is necessary and the stretch k2 in width can be calculated

by

k2 ¼
1ffiffiffiffiffi
k1

p : ð16Þ

The cross-section area A(U) of the samples in the current

configuration B is also needed for the calculation of the

true stress (Cauchy stress T). It is derived with the above

mentioned assumption to

Fig. 11 Comparison between discontinuous and small rate contin-

uous tensile test

Fig. 12 Stretch k1 versus covered machine displacement U and its

linear fit

Fig. 13 Analysis of the incompressibility of the material
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AðUÞ ¼ A0

1ffiffiffiffiffi
k1

p
� �2

¼ A0

1

1:0þ 0:02632U

� �
ð17Þ

where A0 reflects the cross-section area with respect to the

reference configuration B0.

Now the component T11 of the Cauchy-stress tensor T

(true stress) is calculated and plotted against the compo-

nent B11 of the left Cauchy-Green deformation tensor

which we get from the solution of Eq. 14. As shown in Fig.

14 for a number of dogbone samples, the experimental

stress-deformation curves fall almost together.

With these high-quality data, the model can be aligned

to the experiment. In the case of the uniaxial tension test,

the analytical solution for the stress-deformation response

in the relaxed state is developed out of the Neo-Hookean

approach to

T11 ¼ l B11 �
1ffiffiffiffiffiffiffi
B11

p
� �

¼ l k2
1 �

1

k1

� �
: ð18Þ

Here, we take the zero stress in the cross direction into

account. The shear modulus l is determined by the

commercial fitting tool Origin Pro1. It has the value of

1.307 ± 0.006 N/mm2 for over 60 specimens out of

different PUR films. Note the superior accuracy. Figure

15 displays the average stress-deformation response and its

fit with the Neo-Hookean material model. Again, the

model fits extremely well to the data.

Experimental investigation concerning the viscoelastic

behaviour of the PUR

For the evaluation of the viscoelastic material parameters

uniaxial tension tests with the same dogbone samples at

constant strain rates were performed. Tests under loading

and unloading conditions were made as shown in Fig. 16.

We used different machine rates V ¼ _U and got the asso-

ciated hysteresis curves for the specimens.

Following the procedure described above, we obtain a

set of average loading curves for the stress-deformation

response for any constant rate (Fig. 17). The scatter of the

rate-dependent material properties is increasing with rising

deformation rate but it does not extend the limits of 2–8%.

The non-linear material behaviour depicted in Fig. 17 is

much too complex for an analytical solution. Hence, to find

the model parameters we use an evolution strategy method

which is described in the next chapter.

Parameter identification

Description of the general method

For the identification of the viscoelastic parameters the

model response needs to be fitted to the experimentalFig. 14 Stress-deformation diagram of different specimens

Fig. 15 Experimental average data of true stress T11 versus

deformation B11 and Neo-Hookean fit

Fig. 16 Force-deformation curves at different rates
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stress-deformation curves obtained at different rates V. We

use a parameter identification strategy combined with a

boundary value problem which is solved by finite element

analysis. The first goal of our study is to fit qualitatively the

model response to the experimental curves by determining

the number of Maxwell elements which are required to

reproduce the viscoelastic complexity. Secondly, a satis-

fying quantitative fitting has to be obtained for the values

of the parameters le
j and rj.

From the mathematical point of view the process of

parameter identification represents an optimisation prob-

lem. In the present study the vector of material parameters

j :¼ flj
e; r

jg has to be modified until a good match

between experimental data and the prediction of the

numerical model is achieved. For that reason a distance

function f ðjÞ of least squares type, which represents the

quality of the approximation between the model response

using the parameter vector j and experimental data, has to

be minimised. Mathematically this can be formulated as

follows: Find j so that

f ðjÞ :¼ jjTðjÞ �MðTexpÞjj �! MIN ð19Þ

see [49]. Herein

Texp ¼ ½T�t1;exp
11 ; T

�t2;exp
11 ; . . .�T ð20Þ

denotes the response variables which are recorded as

output from the experiment and

T ¼ ½Tt1
11; T

t2
11; . . .�T ð21Þ

is calculated from the presented model by finite element

analysis. As the problem is homogeneous, we only use one

element and solve it at the integration point. In a further

step the identification of the model will be done for

inhomogeneous experiments. Therefore, the required

frame was prepared for the general case. Of course, the

accuracy can be increased by time adaptive schemes, e.g.

Diebels and Ellsiepen [13] and Ellsiepen and Hartmann

[16].

A direct comparison between experimental and calcu-

lated results would not be meaningful from a

computational point of view especially if time adaptive

schemes are used, e.g. [13, 16]. For that reason we intro-

duce the projection operator M which allows the

interpolation of the experimental results by

�Texp ¼ MðTexpÞ ð22Þ

with

�Texp ¼ ½Tt1;exp
11 ; Tt2;exp

11 ; . . .�T : ð23Þ

Figure 18 gives a schematic overview of the applied

procedure with respect to the parameter identification.

Several strategies have been developed for the approach to

solve that class of problems. In general, the strategies can be

divided in deterministic and stochastic methods. Both types

of strategies require a starting vector j0. In deterministic

methods a new parameter vector is calculated using

information from the gradient of the objective function at

the current vector j. The advantage of this strategy is a good

and fast convergence if applied to continuous functions.

However the calculation of the gradient of the objective

function can be troublesome for some constitutive models

and a further drawback is the restricted ability to distinguish

local and global minima. For details of the application of

deterministic strategies, see e.g. [33].

These problems are avoided by the stochastic optimi-

sation method which is based on principles of biological

evolution, as it was first introduced by Rechenberg [42] and

Schwefel [50]. In our work such a multimembered evolu-

tion strategy is employed and the concept behind this

method is now shortly explained. Selecting different

Fig. 17 Experimental average data of true stress T11 versus

deformation B11 at different rates

Fig. 18 Schematic overview of the utilised procedure
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starting parameter vectors (parents), new vectors

(descendants) are generated from the parents by random

mutations, where the step size controls the length of the

random changes. The question how to choose the step size

is one very important part of the algorithm and is fur-

thermore closely linked to the convergence behaviour. In

order to make the algorithm efficient it is suggested that the

step size should be modified during the minimum search,

cf. [50]. Besides the mutation procedure the mechanism of

recombination is used in order to generate additional

descendant parameter vectors. For each component of the

descendant’s parameter vector another parent is randomly

selected from the entire parent population. Afterwards the

boundary value problem is evaluated for the descendants,

where the vectors with the best objective functions are

selected to be the parents of the next generation. There are

various publications like [17, 39] where the evolutionary

algorithm has been proved as a robust optimisation tech-

nique which can be used as a Black Box algorithm for

different classes of material models.

Numerical results

In this section, we present numerical results obtained with

the identification procedure described above. We use the

mean stress-deformation curves at four different machine

rates V ranging from 0.5 to 4.0 mm/s to identify the

material parameters. It should be mentioned that the shear

modulus l which characterises the equilibrium elastic

material behaviour was set to 1.307 N/mm2 as identified

from the uniaxial relaxation tests. The first step of our

investigation concerns the number of Maxwell elements

which are required to describe the non-linear viscoelastic

behaviour of the polyurethane. We repeat the parameter

identification for different numbers of Maxwell elements,

following an empirical rule, which divides the relaxation

spectrum of the material into time decades, where each

decade can be represented with one or more Maxwell

elements. According to our experimental results we expect

the values of the relaxation parameters to be in the fol-

lowing intervals 0–1 s, 1–10 s and 10–100 s. The

simultaneous adjustment of the slowest (0.5 mm/s) and the

fastest (4.0 mm/s) rate has shown that four Maxwell ele-

ments are required for a satisfactory description of the non-

linear relaxation behaviour. Each Maxwell element is

described by two parameters, le
j and rj, so that in total eight

parameters have to be identified by minimising the least

squares error over all four rates, Eq. 19. In detail, three

parent vectors were used in each generation. For the first

generation they were randomly chosen within the feasible

search domain, and for the next iterations the ones with the

best objective function were qualified as parents. Within

one generation three new vectors were generated from each

parent vector by random mutation and four additional

vectors were created by recombination of the total twelve

vectors. That means that per generation the objective

function was evaluated sixteen times, and only the vectors

with the lowest least squares function values were used for

the next generation.

The minimum was reached after 400 iterations. The

optimised set of material parameters j is listed in Table 1.

It can be seen that the values of the identified relaxation

times (r1�r4) agree with our expectations according to the

relaxation spectrum.

The good correspondence between experimental data

and the model prediction using the parameters identified in

the present study is shown in Fig. 19. Here, the component

T11 of the stress tensor T is plotted over the component B11

of the left Cauchy-Green deformation tensor with the

corresponding error bars for all strain rates. Note, that for

each rate V the simulated curve lies within the error bars,

i.e. the obtained parameters satisfactorily describe the

viscoelastic behaviour of our polyurethane within the

investigated range of machine rates.

Cyclic tests at different strain rates show significant

variations between the simulated and experimentally

observed stress-deformation responses at the end of

unloading due to the tensile specimens which do not

qualify for pressure, cf. Figs. 20–23.

Table 1 Identified pure elastic and viscoelastic material parameters

with l, le
j in [N/mm2] and rj in [s]

l le
1 le

2 le
3 le

4

1.307 0.801 0.199 0.441 0.081

� r1 r2 r3 r4

� 0.226 0.529 3.312 97.998

Fig. 19 Comparison of experimental and numerical stress-deforma-

tion curves for the tensile test of PUR dogbone specimens
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Figure 24 shows the numerical simulation of a

relaxation experiment in comparison to the obtained

experimental results. The set of parameters determined

from uniaxial tension tests at constant strain rates allow to

simulate the relaxation behaviour of the PUR in good

agreement with the experiments. Only the stress-peak at

the beginning of the experiment and the stress response in

the relaxed state show very small differences. Neverthe-

less, one can say that the material parameters obtained

from the uniaxial tension test at constant strain rates are

able to simulate quite well the performance in other

experiments which were not used for the identification

procedure.

Conclusion and discussion

This paper combines experimental investigations and the-

oretical modelling of an elastomer PUR network from the

sample preparation to the development of the simulation

tools. As a result, the polyurethane is proven to be an

incompressible viscoelastic material (no plasticity, no

Fig. 20 Comparison of experimental and numerical stress-deforma-

tion curves for cyclic tests for a deformation velocity of 0.5 mm/s

Fig. 21 Comparison of experimental and numerical stress-deforma-

tion curves for cyclic tests for a deformation velocity of 1.0 mm/s

Fig. 22 Comparison of experimental and numerical stress-deforma-

tion curves for cyclic tests for a deformation velocity of 2.0 mm/s

Fig. 24 Comparison of experimental and numerical stress-relaxation

curves for a time of 500 s

Fig. 23 Comparison of experimental and numerical stress-deforma-

tion curves for cyclic tests for a deformation velocity of 4.0 mm/s
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damage effects, no volumetrical extension) in the investi-

gated range of deformation. The aspects of finite linear

viscoelasticity are combined with the Neo-Hookean mate-

rial model. The material parameters of the model are

determined by a biological evolution strategy method. This

is done on the basis of the high quality experimental data

by solving the boundary value problem by finite element

analysis.

A comparison of the model predictions using the

obtained parameters shows an excellent agreement with the

set of experiments. The model results lie within the exper-

imental scatter. Since the presented model adaption is based

on uniaxial data, the material behaviour will be checked by

additional experimental investigations (e.g. shear or torsion

tests and biaxial experiments). Additionally, the model

verification should be completed by measurements with

higher deformation rates and by inhomogeneous experi-

ments. In order to reduce the number of material parameters

for practical applications, a non-linear evolution equation

will be formulated for the internal variables.
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